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The subscript 
of the system with 

to zero, since the 
when 4 = q'= II" = 0 
we now obtain 

03 means that the corresponding quantity is calculated along the motion 
constraints. The last term in the expression for R-is identically equal 

condition that the expression within the parenthesis in this term vanishes 
is Lagrange's equation for motion with constraints. Using (2.1) again 

Integrating from the left and right with respect to t from tl to tl, using integration 
by parts from the right, and taking into account the fact that q'= O(Nevl), r-O'= O(1), we 
obtain the estimate (2.2) of the theorem. 
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THE ASYMPTOTIC STABILIZABILITY OF POSITIONS OF RELATIVE EQUILIBRIUM 

OF A SATELLITE - GYROSTAT* 

V.A. ATANASOV 

A theorem proved in /l/ is used to study the possibility of asymptotic stabilization of 
the equilibrium orientations of a satellite-gyrostat using control moments applied to the 
rotors. 

The asymptotic stabilizability of the stationary motions of mechanical systems with 
cyclic coordinates was also discussed in /2/, where the sufficient condition of stability was 
formulated. This, as well as the analogous condition of /l/, follows from the classical 
theory on the sufficient conditions of stabilization /3/. However, in the theorem in /l/ the 
condition in question leads, by virtue of taking into account the specific features of the 
systems with cyclic coordinates, to the study of the rank of a matrix of lower dimensions. 
From this point of view the theorem in /l/ is more suitable for use when studying the 
stabilizability of the stationary motions of specific mechanical systems. 
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we shall aseume that the centre of mass of the satellite describes a circular orbit in a 
Newtonian field of foxce, and consider a restricted formulation of the problem. 

Following /4/ we select an inertial system of coordinates i&, whose origin coincides 
with the centre of attraction. We also introduce the following systems: Ozi, whose axes 
coincide with the central principal axes of inertia with the origin at the centre of mass, 
and the orbital coordinate system OX,, whose X1 axis is directed along the tangent to the 
orbit towards the motion, the X, axis along the radius vector 010, and the X, axis supplemen- 
tingX, and X, to the right trihedron. We shall define the orientation of the satellite in 
the orbital system using the aeroplane angles a, B, V 

CLI = co9 (X,.4, B1 = cos (X,. z,), Yr = co.3 (X,, Xi) 

i.e. the cosines of the angles between the OX, and 0~~ axes. 
We shall assume that the gyrostat has three rotors whose axes are directed along the 

principal axes of inertia, and 'pi is the angle of rotation of the i-th rotor. We have 

Here o is the absolute angular velocity in the system OQ? ¶ is the column of general- 
ized coordinates and e0 is the orbital angular velocity. 

We shall write the kinetic energy of the system in the form 

where AI is the i-th principal central moment of inertia of the gyrostat and JI is the axial 
moment of inertia of the i-th rotor. 

The potential energy is given by the expression 

We see that the coordinates 'p, are cyclic. Changing to Routh variables, we obtain the 
following expressions for the components R= R,+R,-- W of the Routh function: 

R, = 1iaq’TS2TBQq’, B = diag (lpl, B,, B,), B, = A, - J, 

R, = gTq’, g = kt, g,, g,l= = RTp + RTBQw,* 

W = n - pTPoOf - Y,o,*BTBQoO* + ‘izpT diag (J,+) p 

Here p = [~~,~~,p~l~, pj {j = 1, 2,3) are the cyclic moments. 
The positions of relative equilibrium of the gyrostat $= @.,yo,aJT, ~=p~,~~=const (j = i, 

Z3) are the stationary motions of the system, and are given by the equations 

The last equation determines the manifold of positions of relative equilibrium of the 
gyrostat, and the first two equations give the values of the cyclic moments for which the 
given equilibrium orientation is realized. 

We shall consider the feasibility of asymptotic stabilization of the equilibrium orien- 
,tations belongingltothe following classes of positions of relative e~ilibri~ of the gyrostat. 

czilss A. One of the principal axes of inertia is directed along the tangent to the orbit, 
and the remaining two make a constant angle h with the axes X, 
this orientation 

and X, respectively. 
P= IO,Y~.OI~~ y,~lO,3si, and the values of the cyclic moments 

With 

for which they are realized are given by the relations 
PO = h Pa P81T I, t 
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p1 = 0; 130, (A, - A,) + o0 (8, - B,) sin yu cos I+, ~;- ,u? sin I‘,) + 1~~ cod y0 0 

Class B. One of the principal axes of inertia is directed along the radius vector 
and the other two make a constant angle 3, with X, and X, With this oridr respectively. ’ ’ . 
tation @ = [&,O,O]r, a, E (--n/2,x/2), and the values of the cyclic moments po = IPI, Pz. p31T must 
satisfy the relations 

In both cases E=[&,&,&]r and n=[l],,~,n~]r are, respectively, the perturbation in 
position coordinates and cyclic moments from their stationary values, and we make the follow- 
ing change of variables: 5 = n,-1z; Q, = R ]v+. To a first approxiation the equations of per- 

turbed motion in the neighbourhood of the stationary motion 4' q”, p =pQ are obtained in the 
form 

Bs" = -_c** t_ G'z' - S',)_ Eu; q' = U (1) 
Here 

C* = Q,l=CQ,-1, G* = Q;lrGQ,-1, i\l' = Q,lTh' 

c = II Cij II:, +I’ ci/ = azW (4’9 PO) i Qaa4j 

G = II ~if l/f, +I> Y~I = 8~1 (q”s PO) 1 @I - agi (So, ~‘1 i 341 

Al. = II Et/ II:, ,=I. n&i = @W (Y”3 PO) I 8qzaPj 

E is the unit (3 x 3) matrix and u = [ul, u*, u3]r are the moments applied to the rotors. 
Formally, Eqs.(l) do not differ from the linearized equations of perturbed motion in /l/. 

Therefore the condition of stabilizability formulated there can be formally transferred to the 
mechanical system discussed here, irrespective of the fact that the kinetic energy is not a 
quadratic form of the generalized velocities only. Thus we can assert the following: the 
equilibrium orientations discussed here will be asymptotically stabilizable relative to 
position coordinates and all velocities wi 
vided that the following condition holds: 

rank S = 6, 

h the help of moments applied to the rotors, pro- 

s=OQ,PQ, . . ..J’“QU 

II- 

G’B-’ E 
( P= 

c*i? 0 !I 

(2) 

(in this notation there was no previous passage to normal coordinates). 
Carrying out elementary algebra and direct computations we obtain, for the equilibrium 

orientations of class A, the following two sixth-order minors Mi and M, of the matrix S: 

4 - .43 
Ml = D B, cm y,,, 

A, - A, 
MP = D -sin y0 & (3) 

D = 27w,'(~)2cos~2y, , 

They cannot be simultaneously equal to zero, except in the cases when v0 = x14, 3nl4. 
Therefore, all orientations belonging to class A, except the ones for which yo= n/4, 3nl4, 
can be made asymptotically stable relative to the position coordinates and all moments, using 
moments applied to the rotors. 

In the case of equilibrium orientations for which y0 = x14, 3nl4, we can show that the 
rank s<6, and therefore /5/ the possibility of stabilization is determined, in this case, 
by terms of higher order of smallness. 

In the case of equilibrium orientations of class B, we can find a sixth-order minor dif- 
ferent from M, in (3) by replacing cos*Zy, cos y,, by COS&,. The minor is always non-zero since 
80=*n/Z is the critical value of the aeroplane angles. Therefore, all orientations of 
class B are asymptotically stabilizable relative to position coordinates and all moments, 
using moments applied to the rotors. 

The possibility of asymptotic stabilization of the equilibrium orientations discussed 
here was proved in /5/ only in relation to positional coordinates and position velocities. 
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THE MINIMUM DIMENSIONS OF THE CONTROL VECTOR IN THE 

LINEAR DYNAMIC PROBLEM OF STABILIZATION* 

V.N. SOKOLOV 

A mathematical formalization is proposed of the problem of estimating the 
number of engines necessary to stabilize a mechanical elastic system, 
functioning in conditions of zero gravity, in a specified position. 
Conditions are given which allow the class of control matrices imparting 
the property of full controllability to dynamic systems to be described 
/l/. The analysis of conditions of full controllability for mechanical 
systems in the neighbourhood of the position of equilibrium was given in 
/2/. 

We consider the following dynamic selfsimilar system: 

z'= Fs+ Gu, ZE Rn, UE R"' (1) 

where F and G are constant matrices, x is the state vector and u the control vector. We 
know /l, 2/ that if the condition of full controllability 

rank 11 G, FG, FBG, ., F'-%j = n (3 
holds, then a control u(t) exists which takes the system (1) from any initial position z0 to 
the origin of coordinates. If condition (2) does not hold, then such a control does not, in 
general, exist. Our aim is to determine the minimum number of scalar control functions Uf, 
i.e. the minimum dimensions of the control vector for which the condition of full control- 
lability can be attained by a suitable choice of the control matrix G. The answer to this 
problem is given by the following theorem. 

Theorem. Let kl be the number of linearly independent eigenvectors corresponding to 
the i-th eigenvalue of the matrix F, and k=max,k,. Then k will be the minimum dimension of 
the control vector u(t) for which the choice of the matrix G can still result in satisfying 
the condition of complete controllability (2). 

Following /3/, we shall introduce a number of concepts and assertions. We shall call the 
vector g the root vector corresponding to the eigenvalue h,, provided that 

(F - I,E)hg = 0 (3) 
for some integral value of h>O. We shall call the heigt j of the vector g the smallest 
value of h for which condition (3) holds, i.e. (F - h&'g# 0 and (F - h,E)jg = 0. The zero 
vector has zero height by definition. The set of root vectors corresponding to some eigen- 
value A,, forms a root subspace P,, invariant under the transformation F - J.,E, and consequently 
also invariant under the operator F. The root subspace P, in turn decomposes into k, cyclic 
subspaces (k, is the number of linearly independent eigenvectors corresponding to the i-th 
eigenvalue), invariant under the operator F. These subspaces 
over the vectors 

Ilpi. p = 1,2,... k,, are stretched 
CV’~ . which satisfy the condition 


